
Journal of Statistical Physics, Vol. 76, Nos. 1/2, 1994 

Low-Temperature Phases of Itinerant 
Fermions Interacting with Classical Phonons: 
The Static Holstein Model 

Joel L. Lebowitz 1 and Nicolas  Macris 2 

Received November 16, 1993; final February 2, 1994 

We consider models of independent itinerant fermions interacting with classical 
continuous or discrete variables (spins), the static Holstein model being a 
special case. We prove for all values of the fermion-spin coupling and a special 
value of the fermion chemical potential and classical magnetic field, at which the 
average fermion density is one-half and the average total spin is zero, that there 
are two degenerate ground states of period two with antiferromagnetic order for 
the spins and fermions. The existence of two corresponding low-temperature 
phases is proven for large coupling and dimension two or more by using a 
Peierls argument. This generalizes results of Kennedy and Lieb for the Falicov- 
Kimball model. 

KEY WORDS: Itinerant fermions; low-temperature phases; antiferro- 
magnetic ordering; static Holstein model; classical phonons. 

1. INTRODUCTION 

We s tudy  the equ i l i b r ium proper t ies  of a general  class of lat t ice models  of 
free i t ine ran t  fe rmions  in te rac t ing  with classical degrees of freedom. The  fer- 
m i ons  are descr ibed by crea t ion  an d  a n n i h i l a t i o n  opera tors  c~, cx at  lat t ice 
sites x ~ A, A a finite subset  of the d -d imens iona l  cubic  latt ice Z d. They  
satisfy the canon ica l  a n t i c o m m u t a t i o n  re la t ions  C~Cy+C~Cx=6x.v,  x ~ A ,  
y e A. The  classical degrees of f reedom are descr ibed by a spin var iable  sx, 
x e A, which takes discrete or  c o n t i n u o u s  values in R. This  is specified by 
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an a priori even spin measure p(sx) chosen according to the physical 
significance of the spin variables in the models considered. We follow the 
ideas of Kennedy and Lieb (~s'~9) on the Falicov-Kimball model which 
corresponds to sx taking on only two values. 

The Hamiltonian of the system is given by 

HA(!a,h)= • t,,yC.+~Cy+2 • nxsx-h ~. sx 
X , ) ' E A  x ~ A  x ~ A  

- p Y. nx+ ~. f(s~) (1.1) 
. x ~ A  x ~ A  

where the hopping matrix is lxy=-1 for [x-yl = 1 and 0 otherwise, 
n.~ - - c x + cx, and h and p are the magnetic field and chemical potential 
acting, respectively, on the classical and fermion degrees of freedom. The 
term f(s.2~) represents the energy associated to the classical degree of 
freedom. 

The average value of a general observable O({c.*~, cx, sx}) at inverse 
temperature fl is given by 

<O({ct~, c~, sx})>,, (/~, ~, h) 

=~ r-I dsyTr[O({c~, c~,sx})PA(fl, P, h)] 
. r ~  A 

(1.2) 

where PA is the density matrix 

PA(fl, P, h ) = z ~  I-'I p(s.~)exp[--flH A(l~, 17)] 
x E A  

(1.3) 

and Z,~ is the partition function 

ZA =f 1-I P(Sx) dsxTrexp[-flHA(P, h)] (1.4) 
.x 'EA 

Since for specified values of the {sx} the fermions are not interacting, 
the average of observables which depend exclusively on the spin variables, 
for example, SA =I-L~A sx, A c A, can be computed by first tracing out 
the fermions. This yields a classical (Gibbs) probability distribution for the 
spins such that 

1 
(SA)A (fl,#,h)=-Z~AI SAexp[--flFA({sx},fl, p,h)] I-[ p(s.,.)dsx (1.5) 

.~;EA 
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where FA({sx}, fl,/~, h), the effective interaction energy between the spins, is 
given by the formula 

1 
FA({sx}, fl, p, h)=fl -t IZl In 2 + ~  tr[H({sx})-p] 

- fl-~ tr {In cosh ~ x / [ H ( { s x } ) - / a ]  2 } 

--h E s~+ ~, f(s~) (1.6) 
x ~ A  x ~ A  

The one-fermion hamiltonian H({sx}) in (1.6) is a IAI x IA[ matrix 

H({sx}) = T+2S (1.7) 

where (T)~v=t~v and (S).~=s~6~y. [To get (1.6) one uses the identity 
1 + e -x = }e'-X/2cosh(�89 ~/x2)]. " " 

It is possible to recover from the classical distribution (1.5) informa- 
tion about certain quantum observables by using the following type of 
formula (proved in Appendix A): 

h 2 , 2 
(nx)A (fl, #, h ) = ~ + ~  (sx f  (Sx))A (fl, /~, h) (1.8) 

In various applications the second term on the right-hand side of (1.8) is 
in fact proportional to the order parameter of the effective classical model 
[defined by (1.5) and (1.6)] so that information about the fermion phases 
can be obtained from the classical phase diagram. We also discuss in the 
conclusion and Appendix A a formula connecting the spin-spin correlation 
to the imaginary-time displaced density-density correlation of the fermions 
(or Duhamel two-point function). 

The ground-state energy of the fermions in a given classical configura- 
tion {sx} is defined by 

EA({sx},#,h)= lim FA({sx},fl, l~,h) (1.9) 
,fl~oo 

From (1.6) one finds 

l tr{[H({sx})-1~J2}m eA({Sx},#,h)= - ~  

+ ~ f(s~)+ - h  ~ Sx-~lAI (1.10) 
x E A  x e A  

The ground states of the full system are found by minimizing this function 
over all possible spin configurations. 

822/76/I-2-7 
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Resu l ts  

In the present work we obtain rigorous results about the ground states 
and low-temperature phases for the special case where h = 2/2 and /~ = 0. 
We call this point in the (/~, h) plane the symmetry point because the Gibbs 
factor in (1.5) is invariant under a global spin reversal {sx} ~ { - sx} .  To 
see this, let (U).~y=ex6 ...... ex= +1 for x even and - 1  for x odd, be a 
IAI x IAI matrix; then U * T U = - T  and UtSU=S. Thus UtH({sx}) 2 U= 
H({-sx})2 ,  which together with the unitarity of U implies the invariance 
of the Gibbs factor at the symmetry point. At the level of the fermion 

t exchanges particles into operators the transformation c~ ~ e~cx, c.~ excx, 
holes because e~cx~ 1-c~c~. Moreover, since the transformation is 
unitary, one can check that (c]o,.)A (fl, 0, 2 /2)= 1 - (c]cx)A (~, O, 2/2). 
Thus at the symmetry point the electron density is exactly 1/2 for any ft. 

In particular we prove that for a large class of functions f(s~) there are 
two ground-state configurations of the spins for all 2 

sx= ___exao(2) (1.11) 

where the amplitude of the spin a00.) is the solution of an integral equation 
depending on the particular single spin measure. At low temperature and 
large 2 we prove that there are, in d>~ 2, at least two phases corresponding 
to the two antiferromagnetic ground states. 

The proof makes use of a Peierls-Dobrushin argument adapted to our 
situation. The application is made difficult by the fact that the effective 
energy (1.6) and (1.10) contains many-body interactions among the spins, 
whose structure is difficult to obtain. This prevents the straightforward 
application of methods of classical statistical mechanics to the spin prob- 
ability distribution (1.5). Our analysis brings out the following features of 
FA({sx}, fl, O, 2/2): At low temperatures the dominant terms in the total 
effective energy are the sum of a one-body and two-body potential; n-body 
terms with n > 2 are negligible. The one-body term consists of a double well 
with two minima at +%(2) .  The two-body term has an Ising antiferro- 
magnetic form if the spins have values close to the minima. The main 
difficulty we have to overcome in applying the Peierls argument is that the 
energy gain associated with a Peierls contour becomes very small either 
when the spins adjacent to the contour take values close to zero or when 
they take very large values. It turns out that the one-body contribution acts 
as an "effective chemical potential" which discourages too small or too 
large values of the spins. 

We discuss more specifically three special models. 
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T h e  S t a t i c  H o l s t e i n  M o d e l  

This model has the single spin measure p(s.,.)= 1 and energy 

f ( s ~ ) -  ' 2 . - -  -~S x (1.12) 

Physically the corresponding Hamiltonian describes an interacting 
electron-phonon system t~5'n~ where the phonons are treated as classical 
oscillators. Since the oscillators are classical one can integrate out their 
momentum variables and only the position variables remain (hence the 
name static, for quantum mechanical oscillators position and momenta do 
not decouple). Thus in this case sx is to be interpreted as a position 
variable of a harmonic oscillator at site x. This model has recently been dis- 
cussed extensively in refs. 1 and 2, where it is called the adiabatic Holstein 
model. 

An application of the formula (1.8) to the Holstein model at the 
symmetry point gives the simple relation 

1 

The behavior of <nx> is the same as that of <s,.>. Our results for the 
ground state in any dimension and at low temperatures, in d~>2, thus 
prove that the electron density forms a "charge density wave" of period 2. 
This makes rigorous the theory of the Peierls instability for this model (for 
results in one-dimensional models see refs. 3 and 19). We can also prove 
that at high enough temperature F~({sx}, f l ,  O, 2/2) is a strictly convex 
function of {s,.} with a unique minimum at s x = 0  for all x ~ A .  The 
abscence of long-range order for t322 ,~ 1 then follows from an application 
of the Brascamp--Lieb inequalities. 

One can also add anharmonic corrections to the energy of the 
oscillator, tS~ e.g., 

2 1 2 f (sx)  = ~ s . ,  + 0~4 $4 "~  "" ", O~ 4 > 0 (1.13) 

without changing the main results. The only difference is that convexity 
does not hold for single spin energies without the quadratic term, for 
example, 2 4 f(s.,.) = a4s,.. In fact we will show that when the quadratic term 
is absent the effective energy is minimized for all temperatures by the two 
antiferromagnetic spin configurations. There is, of course, still an absence 
of long-range order at high temperature, but it does not follow directly 
from Brascamp-Lieb inequalities. 
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The Falicov-Kimball (FK) Model 

In this case one takes 

p(sx) = �89 - 1 ) + 6(sx + 1)] (1.14) 

In other words, one can consider the spin as a discrete variable taking 
values in { - 1 ,  + 1}. Moreover the Hamiltonian (1.1) is defined without 

s 2 the term Z.~ f ( x ) ,  which would just be a constant in this case. The FK 
model has been analyzed extensively in the literature. In refs. 18 and 19 
(but see also ref. 26) it was studied in detail at the symmetry point (density 
1/2), where one has two degenerate antiferromagnetic ground states and 
two corresponding low-temperature phases in d>~2. These results were 
extended t22) for large 2 to a strip of width 1/2 in the (p, h) plane around 
the symmetry point, thereby allowing the density to be different from but 
close to 1/2. Results concerning the ground state for other rational densities 
can be found in refs. 7, 20, 11, 13, and 14 for the one-dimensional case and 
in ref. 17 for two dimensions. 

One can obtain this model as the limit y --, oo of a continuous spin 
model with 

p~(sx )=e  -y('~-l)2 dsxe  ~('~ I)2 (1.15) 

This enables us to apply (1.8) and obtain (see Appendix A) 

(nx)A(/~,0,_22)=l 2 g(/~, ),)(Sx)A ( 0 ,~)  ~ + i  \/~, (1.16) 

with g(fl, ;t) given by (A.7). This relation, which is valid for any fl and 2, 
is new to us. Since g(fl, 2) is analytic in/~, the critical behavior of (n~)  is 
identical to that of ( s , ) ,  which is presumably of Ising type. The latter fact 
has been shown to hold in the limit of infinite dimensions. (25) 

An Intermediate Model 

A useful model which is intermediate between the Holstein and FK 
models has 

p(sx) = ~E,~(s 0 + ,~(s~- 1)2 (1.17) 

In this case the spin takes the three values +1,  0, and - 1 ,  and the 
Hamiltonian is defined without the term Y'-x f (s~) .  This model already con- 
tains some essential features of the static Holstein model. For the sake of 
clarity we present the Peierls argument for this case and then indicate the 
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necessary modification needed to treat the case of continuous unbounded 
spin. 

The rest of the paper is organized as follows. In the next section we 
analyze the ground states for continuous spins according to the choice of 
f (s]) .  Section 3 is devoted to the study of the structure of the effective 
potential at positive temperatures. We prove there results about the 
minima of FA({sx},/3, 0, 2/2) for small and large ft. The low-temperature 
behavior of the system is the subject of Section 4, where the Peierls 
argument is carried out. Section 5 contains a discussion of open problems. 
More technical material can be found in the appendices. 

2. G R O U N D  S T A T E S  

We consider the model on a cube A c Z d containing (2N) d sites with 
periodic or free boundary conditions. We want to minimize the ground- 
state energy at the symmetry point (/~, h ) =  (0, 2/2), 

E({sx}) = -�89 tr{ [H({sx})]~}l/2 + ~ f ( s~)  (2.1). 
x ~ ' A  

where, to keep the notation simple, we do not write the A and (/~, 2) 
dependence explicitly. The case of the Falicov-Kimball model has been 
treated in refs. 18 and 19 and the case where p(s.~) is a uniform distribution 
on the interval I--1,  +1 ]  and f ( s~)  is absent has been considered in 
ref. 21. For both situations E({sx}) attains its two unique minima for the 
antiferromagnetically ordered configuration sx = +ex, all x ~ A. When one 
has to take into account the energy f ( s~)  the amplitude of the minimizing 
spin configuration will be different from + 1 and is determined by an 
integral equation. 

T h e o r e m  2.1. Let f ( t )  be a positive convex function for t/> 0, with 
f ' ( t )  > 0 for t large enough. Then 

(i) E({sx}) in (2.1) attains its global minimum for the antiferro- 
magnetic spin configurations 

s~= +e.,.a0(2) (2.2) 

where tro2(2) is the solution of the equation in t 

2 z ~ 1  ~ 4 +22t 
f ' ( t ) '=-s  k . . . . . . .  a �9 ~ (2.3) 

and the sum is over the modes k==nn=/N, n~= - N ,  .... +N,  (2N)a= IAI. 

(ii) These are the only two global minima. 
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Remarks. (a) This theorem makes rigorous the theory of the 
Peierls instability for this class of models. Here it is valid in any dimension 
due to the fact that there is no coupling between the phonons on different 
sites. Equation (2.3) is standard in the solid state literature. 

(b) The theorem makes sense because a unique solution of (2.3) 
always exists (for all 2) as long as IAI is large enough. This is also true in 
the thermodynamic limit. In the case of the Holstein model for large 2, 
%(2)--~2/2 and for small 2, Cro(Z),-,Z-lexp(-42-z). These facts are 
proved in Appendix B. 

(c) We could consider more general bipartite lattices, in which case 
the sum over cosines in (2.3) would have to be replaced by the appropriate 
dispersion relation ~.~ t~o exp(ik �9 x). 

(d) Fermions with a spin one-half would give the same result with a 
factor of 2 multiplying the right-hand side of (2.3). 

Proof of Theorem 2.1. The first step of the proof uses an idea of 
refs. 18 and 19, which we reproduce here for completeness. As noted in the 
introduction, H({sx})2 and H( { - s x  } )z are unitarily equivalent. Thus from 
(1.12) we have for # = 0  and h=2 /2  

E({s~.}) = �89 + E({ -s.~})] (2.4) 

Using the fact that tr ~ is a concave function of the matrix X together 
with (2.4), one gets 

E({sx}) >/- �89 tr[H({sx}) 2 + H({ -s.,.}) z]'/2 + ~ f(s~) 
X E . 4  

= -�89 tr(T 2 + 22S2) ~n + Y' f(s~) (2.5) 
. ~EA 

In (2.5) the equality is attained for configurations such that TS+ ST= 0, 
i.e., sx + sy = 0  for all nearest neighbor pairs x, y ~ A. The most general 
form of such configurations is sx= +~,.~, where a is any positive real 
number. 

We will now show that there exists such a configuration which mini- 
mizes the lower bound in (2.5). Clearly this will also be a minimum of 
E({sx}). We set $2=  qb, (q~)x.,,= ~bx6x.,,. The lower bound is a function of 
{ ~b,. }, namely 

G({~x}) = -�89 tr(T 2 + ;t2r m + ~ f(r (2.6) 
s E A  



I t inerant Fermions 99 

We have 

O(~x= f'(r (TZ + 2zq~) -t/2 

Since <Yl Oqs/dq~xlz)=6.~:,6:x, any local minimum satisfies 
equations 

,~2 
f'(~bx) =-~ - (xl (T2 + 2zgb) -'/2 Ix>, 

(2.7) 

the set of 

For a solution of (2.8) we try the ansatz 0~.~ = a 2, a a real constant inde- 
pendent ofx.  One obtains (2.3) by expressing the right-hand side of (2.8) 
by a sum over the wavenumbers of the first Brillouin zone. (See remarks 
after the theorem for the existence of a solution.) Thus we have found at 
least one local minimum of G({~bx}). Obviously G is a convex function, so 
this must also be a global minimum of G and therefore of E({sx}) also. 

It remains to prove statement (ii). In fact this follows from the unicity 
of the minimum of G({~bx}), which we now prove by showing that for any 
{~bx} the matrix O2G/O(% O~v is strictly positive. From (2.7) we have 

with 

OZG 
- - -  f"(~b,) 6,v+ Mu, (2.9) 

22 O 
M.~= - ~ -  <vl ~--~. (TZ + 22q>) -'/2 Iv> (2.10) 

T o  compute the partial derivative with respect to ~bu in (2.10) we use the 
following representation of the square r o o t  ~'6) 

(TZ + 22~)_1/2 1 ~: dr 1 
= ~  v/-~ r + ( r2  + 22q~) (2.11) 

An application of the resolvent equation leads to 

24 I~ dr 1 1 
Mu~ o --~rr<Ulr+(TZ+22~)lv)(Vlr+(T2+22q5 )4u) (2.12) 

Since (2.12) is ?eal and symmetric with respect to exchange of u and v, we 
only have to show that 

e=  ~ M.oeuq, o>O (2.13) 
u .  u f i  A 

x~A (2.8) 



100 Lebowitz and Macris 

for all real-valued nonzero functions Cx, x EA. Denoting by ~O the 
self-adjoint multiplication operator by the real function ex, we have from 
(2.12) 

r I 1 1 ]  P -  2n Jo ~ ~br+(T2+22~)~br+(Ti-+22~) (2.14) 

Since T 2 ~<4d 2 we get, using (2.14) and the cyclicity of the trace, 

~176 if2 4d2 + J'2~)z ] P~>2)~-~I x/~ [ ( r +  1 

= ~ ~ r r  ~b.~ (r + 4d 2 + )~20x)2 
(2.15) 

By hypothesis there exists at least one x e A for which ex ~ 0; thus P is 
strictly positive. Since if(t)>1 0 (t >1 0), 02G/a~b, a~b v is positive definite. This 
concudes the proof of the theorem. 

3. STRUCTURE OF THE EFFECTIVE ENERGY 

We are concerned with qualitative properties of the total effective 
energy depending on the particular class of functions f(s2). At the sym- 
metry point (/~, h) = (0, 2/2) it takes the form 

F({s~})=-/3-'trFlncosh~{[H({sx})]2}'/2]+ ~ f(s:) (3.1) 
U z- ._1 x e  A 

The main results of this section are the following. 

T h e o r e m  3.1. Let f(t) be a positive convex polynomial ~ = 1  aj ti, 
with aN > 0. We consider two cases: 

(i) a~ =0. Then for any/3 and ,l, F({sx}) attains its global minimum 
for the antiferromagnetic spin configurations 

sx= +exal(2,/3) (3.2) 

where a~(2,/3) is the solution of the equation in t, 

f ' ( t ) =  4 IAI ~ [ E ( k ) ] - '  tanh E(k) (3.3) 
k=,at= 1 . , . d  
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with 

E(k) = [4 (=~, \2 -1,/2 cos k=) +;:,J (3.4) 

Moreover, these are the only two minima. 

(ii) al >0.  Then, for a given 2, Eq. (3.3) has a solution only for fl 
large enough and the only two global minima of F({sx }) are given by (3.2). 

Theorem 3.2. Suppose that f ( t )  is as in (ii) of Theorem 3.1 and all 
a j>  0. Then there exists a positive constant c such that for fl22< c, F({sx}) 
is a strictly convex function.of {sx}. Since it is even, it attains its unique 
minimum at s.,. = 0, all x~  A. For the Holstein model al = 1/2 and one can 
take c = 2. 

These results show that when the quadratic term is absent in f(s-',.), the 
qualitative structure of F({sx}) is independent of fl, but it can change with 
fl when a quadratic term is present. In particular the static Holstein model 
falls in the second category. An interesting application of Theorem 3.2, 
which we defer to the end of this section, is a proof of the absence of 
long-range order in the Holstein model for/322 ,~ 1. 

Proof of  Theorem 3.1. The same arguments which led us to (2.5) 
imply the lower bound 

F ( { s x } ) ~ > - ~ t r  lncosh (T2"~-,~2S2) 1/2 -4;- Z f(s-.,.) (3.5) 
X•,4  

In particular the equality is satisfied by any antiferromagnetic configura- 
tion (indepently of the spin amplitude). Now we look for the minima of the 
function 

(~({4~,.})=-~trlncosh (T2+3flr ~ f(4'.,-) 
.~,'e A 

(3.6) 

The local minima are given by 

22 
f'(~bx) - Z (x] (T  2 + 22r - fl + 22q~) v2 1/2 tanh ~ (T 2 ix )  (3.7) 

which leads to Eq. (3.3) if we express the right-hand side as a sum over the 
first Brillouin zone. The convexity of (3.6) is obvious by inspection, so that 
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the solutions of (3.7) are global minima. The existence of solutions for 
a~ =0,  all fl and a~ >0,  large fl is discussed in Appendix B. It remains to 
prove that (3.6) is strictly convex. To compute the second derivative of 
(3.6) we use the representation 

( T  2 + 2 2 ~ ) - 1 / 2  t a n h  fl ( T  2 + ~.2tJ~) 1/2 

which leads to 

c~2C 

k=0 
(3.8) 

~4fl3 
- -  ---- f"(~b,,) 6,o+"-i-~k2O.= (Ul (k + �89 n2+ �88 + 22~) Iv) 

1 
x (ol t~ ~) ~ / J t l  z w )  "'--1-"2 ~2-~.-'"2"-2-[ -~2~" lu> (3.9) 

Using (3.9), one can easily prove the analog of (2.15) and conclude the 
proof. 

Proof o[ Theorem 3.2. For simplicity we consider first the case 
where f(s~) is purely quadratic (Holstein model) and give the necessary 
modifications for the general case. Since cosh(x) is an even function we can 
write 

F ( { s x } ) = - ~ t r  lncosh (T+,~S) + ~ ~ .,. 
-J .x'E A 

(3.1o) 

The second derivative of F({sx}) is 

t32F ). O fl 
c3sxc3s.~=6,-,,-~ (xl _ - - - t a n h - ( T + ; t S )  Ix) Os;, 2 

(3.11) 

To compute the partial derivative in the right-hand side of (3.11) we use a 
formula analogous to (3.8), 

tanh ~- (T+  ;tS)= fl(T+ ).S) ~ Gk(S) (3.12) 
k=0 

where 

1 
Gk(S) = ( k +  ~)2 r~2+ �88 (3.13) 
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One then finds 

a [tanh2fl-(T+2S)] 
0 S y  

=fl2ly)(yl ~ Gk(S)+~(T+2S) 
k = 0  

x ~ Gk(S)[(T+2S)ly)(yl + ly)(yl ( T + 2 S ) ]  Gk(S) 
k = O  

Combining (3.14) and (3.11) gives 

• 
Osx OSy = 6~y- (A x.,, + Bxy) 

with 

(3.14) 

(3.15) 

and 

-_ 6 32z o~ 
A~v= "Y--2-k~0 (X[ Gk(S) Ix) 

fl422 
BxY= 8 ~ [(xI(T+2S)Gk(S)(T+2S)Iy)(ylGk(S)[x) 

k = 0  

(3.16) 

+ (xl (T+  2S) Gk(S) [y) (Y[ (T+ 2S) Gk(S) Ix) ]  (3.17) 

Since Axy and Bxy are real symmetric kernels, it is sufficient to check that 

32F 
Y" c?s~ Os~---~, ~b(x) ~k(y) > 0 (3.18) 

X, .l' ~ A 

for real nonvanishing functions ~k(x), x e A. We prove lower bounds for the 
contributions of A ..... and Bxy to (3.18). 

Contribution of  A xv. We have 

(xl Gk(S) Ix> ~< IlGk(S)l[ <~ (k + I x2 2 5) rt 
(3.19) 

Thus 

2 [ ~  1 
_<~a o ~,_~ 2l Z lg'(x)l 2 (3.2o) ~. A.,:,,~b(x) tp(y)..~-y- k~ (k+~) rt AxEA 

x y e A  
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Contribution of Bxv. Let ~b denote the multiplication operator by the 
function O(x). We have 

/~322 
B.,f(x) ff(Y)=T ~ {trEr 

x y E A  

(3.21) 

k=0 

+ trEO(T+ 2S) Gk(S) O(T+ 2S) Gk(S)] } 

We notice that 

12 
-~- (T+  2S) z ~< [Gk(S)] -1 (3.22) 

Multiplying this inequality on both sides by [Gk(S)] ~/z and using the 
commutivity of Gk(S) and (T+  2S), we obtain 

12 
-~- (T+ 2S) Gk(S)(T+ 2S) ~< 1 (3.23) 

Using (3.23), (3.19), and the cyclicity of the trace, we obtain 

-~tr[~,(T+2S) Gk(S)(T+2S)OGk(S)]<~ (k_l_l)2rr 2 ~ 0(x) 2 
.re A 

(3.24) 

For the second trace we first use the Schwartz inequality 

tr [~O( T +  2S) Gk(S) ~O( T+ 2S) Gk(S)] 

~< tr[~b(T+ 2S) Gk(S) 2 (T+ 2S)~b] 

= tr{ q~ [Gk(S)] ~/2 (T + 2S) G,(S)(T + 2S)[Gk(S)] ~n O } (3.25) 

Then by (3.24) and (3.19) we get the same upper bound as in (3.23). 
Collecting these two estimates, we obtain 

~'. B.,.yO(x) qsty~-,~--~- (k+�89 2 }-" I~b(x)L 2 (3.26) 
x .  y E A k 0 x ~ A 

Finally, using the estimates (3.26) and (3.20), we get from (3.15) 

E OS,.OS--~.~I(X)~I(Y) >~ l - - f l  )-2 (k+�89 2 ~ Iqs(x)l 2 (3.27) 
x v G A  - . k = O  x ~ A  

The sum over k in (3.27) is equal to 1/2. Thus (3.18) holds for all non- 
vanishing ~,(x) if/322 < 2. 
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In the general case where f(s~) = ~s ass2x s the same arguments lead to 
(3.27) with the term in parentheses replaced by (a~-/322/2) plus an extra 
term which is surely positive when all as> 0. 

Absence of Long-Range Order for I]Az< c 

We.first recall an inequality of Brascamp and Lieb. ~4) Let C be a 
positive n x n matrix, and W(z), z = (z~ ..... z,,) e R", a log-concave function. 
Consider the average of a function N(z) 

(N) , ,  = "[ N(z) W(z) e -(:'c~)/2 
S W(z) e -(~'c=~/2 (3.28) 

Then if Cw is the matrix with entries ((z;zs) h -  (z;)h (zj)h), i , j=  1 ...n, 
we have the matrix inequality 

Cw<~ Cw= 1 = C- l  (3.29) 

For a fixed a > 0 sufficiently small let 

2 (3.30) ro({sx})=r({sx})-a E 
x ~ A  

By the same proof as that of Theorem 3.2, Fa({Sx}) is strictly convex for 
/322 <.~ 1, uniformly in {sx}. Thus exp[--/3F~({sx})] is a log-concave func- 
tion. A straightforward application of (3.29) then gives 

1 
( ( s ;s j ) ,  (/3)- (s;)  A (/3)(sj) A (/3));.j=,...iAi ~<~aa (60);'S=l'"HI (3.31) 

as quadratic forms. With periodic boundary conditions we have 
(Si)A (/3)=0 SO that by (3.29) all eigenvalues of ((siss) A (/3));.s= t...lal are 
bounded by a-~/2. Consequently the Hilbert-Schmidt norm of this matrix 
is bounded by a -~ IA[, i.e., 

1 IAI IAt 1 
IA---[ ~" ~" I(S;Ss)A (/3)12"<-- (3.32) 

i=1  j = l  a 

Clearly this means that there is no long-range order for/322 ,~ 1. 

4. LOW-TEMPERATURE PHASES 

We expect that in dimensions greater than or'equal to 2 there are two 
low-temperature phases corresponding to the ground states for all 2. Here 
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we prove this fact for 2 large. To  make  this s tatement  precise we impose + 
or - boundary  condit ions on HA in (1.1). These are defined, respectively, 
by exsx= +a0(2)  and exsx=  - a 0 ( 2 )  for xe. {u ~ A [ l u - v l  = 1, v ~ Z a \ A } .  
This set consists of the sites of A which are at the boundary.  The corre- 
sponding averages at the symmetry  point (#, h ) =  (0, 2/2) are denoted by 
( - ) ~ - ( , 8 )  and ( - - )A  (fl)" For  the static Holstein model  we prove the 
following result. 

Theorem 4.1.  There exists a fixed number  6 ' > 0  such that  for 2 
and/~/2 sufficiently large we have 

+ao(2 ) -6 '~  < <~sx)~ (/~)< _+~o(;t)+ ~' (4.l)  

We recall that  a0(2), the solution of (2.3), behaves as 2/2 as 2 --* ~ .  

We first present the detailed Peierls a rgument  for the case of  discrete 
spins taking values - 1, 0, + 1 [ the model with single spin measure (1.17)]. 
To  do this we combine an idea used in ref. 12 with the technique of refs. 18 
and 19 and prove the s tatement  of Theorem 4.1 with tro(2 ) replaced by 1, 
and some 6' <~ 1. The case of continuous spins introduces extra technical 
complications which we explain at the end of the section. 

Peierls A r g u m e n t  for  the  Discrete Case. We adopt  the 
following setup. Fix + boundary  conditions, i.e., fix s ,  = e~ for u a bound-  
ary site. Given a configuration {s,.}, we say that  the site y ~ A is "correct" 
if s,, = ~,., otherwise it is "wrong." Clearly all boundary  sites are correct and 
all sites y with Sy = 0 are wrong. Now draw the Peierls contours  by drawing 
a bond on the dual lattice whenever one of the adjacent sites is correct 
and the other wrong. .12~ Let y be an external contour,  i.e., f rom any site 
adjacent to ~, externally there is a path  to the boundary  not crossing any 
contour.  All the adjacent external sites will then have s.~ = e.~, while the sites 
adjacent to ~ from the inside will have either s~. = - e x  or s.,. = 0. Le t / (y )  be 
the total number  of sites adjacent to y from the inside. We label by 
r ..... ~k~.~ the sites which are adjacent to y from the inside which are not 
zero and by ~kr ~ ..... r the remaining sites adjacent to y from the inside 
(they have zero spin). Suppose that  the probabil i ty of a contour  y with 
specified ~ ..... ~kl~'~ satisfies the estimate 

P(Y; ~l ..... ~k~,J) ~< e-~J()~ m,~ (4.2) 

for some positive function J(2). Then the probabil i ty of a contour  y can be 
estimated as 



I t inerant Fermions 107 

k = 0 ~ , . . . ,  ~k(~) 
t(~) 

E E e-BJ(2)t(e) 
k = O  ~b.... ~,k(~.) 

t(~'f l(7)! -aJO.)tl~) 2tl~)e-#J(>.)tl~,) (4.3) ~< ~< 
=o k(y)! [ l ( y ) -  k(y)]!  e 

With (4.3) one can easily complete the Peierls argument. In order to get the 
estimate (4.2) on P(% ~t ..... Ck(~.~) it is sufficient to show that 

V({s,.})-r({s*})>~J(~) t(~) (4.4) 

where {s*} is obtained from {sx} by flipping all the spins inside y except 
for those at the sites Ck(~,l+ t ..... ~<~,), and replacing the latter ones by those 
corresponding to the correct phase. For  specified ~ ..... r this transfor- 
mation is one to one and removes the contour  y: it can also modify the 
contours  inside y. 

Integral Representation for (4.4). We have to decouple the 
contributions to (4.4) coming from the interior (int y), exterior (ext y), and 
boundary  of y, 0~ = { u, v n.n I u e int 7, v e ext ), }. To this end we introduce 
three or thogonal  projectors: A~, which projects on the subspace of one- 
particle wave functions supported on the sites ~kl~.)+~ ..... ~t~); P~., which 
projects on the subspace of wave functions supported on the remaining sites 
of int ),; and finally Q~, which projects on the wave functions supported on 
ext?.  Obviously we have P~+Q~,+A~=I and P~,Q~=P~.A~=Q~A~.=O. 
Moreover  the projectors commute with S. The square of the Hamil tonian 
can be decomposed as (2"~) 

H({sx}) 2 = X.~(S)+ Y,,(S) (4.5) 

where 

X~.(S)=P,~H({s.,.})ZP~,+Q~H({s.,})2Q~.+A~,H({sx})2Ar (4.6) 

and 

Y;.(S) = P~.H( { s.,. } )2 A,. + A.~H( {sx} )z p,. + P,~H( {s.,. } )z Q~, 

+ Q~,H({s.,.}) 2 Pv + A~.H({sx}) 2 Q~, + Q~H({s.,}) 2 A~ (4.7) 

We set 

Z,(S) = X,,(S) + tY~,(S) (4.8) 
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for 0<~t~<l and 

1 {In cosh F(S, t)= - ~ t r  ~ [Z,(S)] ./2} (4.9) 

It follows from the orthogonality of the three projectors that the derivative 
of F(S, t) with respect to t satisfies F'(S, 0) = 0. An integration by parts 
gives 

1 

F({sx})=F(S, 1)=F(S,O)+fs dt(1-t)f"(S, t) (4.10) 

The second derivative in (4.10) can be computed by using the formula (3.8) 
with Z,(S) replacing T2+ 22~. This leads to the integral representation 

F"(S, t) = -fg ~ fk(S, t) (4.11 ) 
k = O  

where 

and 

fk(S, t )= tr[ Y~.(S)Gk(S, t) Yr(S)Gk(S, t)] (4.12) 

I( 1' Gk(S, t )= k +  n2 + ~- Z,(S) (4.13) 

[For the sake of simplicity we have not indicated explicitly the unit matrix 
multiplying (k+ 1/2)n2.-] Using these formulas, we can represent (4.4) as 
a sum of two contributions 

F({sx}) - F({s* }) = (I) + (II) (4.14) 
which are 

(I) = F(S, O) - F(S*, 0) (4.t5) 

( I I )= i~  ~ [f~(S, t)--fk(S*, t)] (4.16) 
k = 0  

Lower Bound for (I). We note that 

ltr{lncosh~[Xr(S)]t/2} F(S, 0)= 

=-l(tr{P~'lnc~ 

+ tr Q~. In cosh ~ [Q~.H({s,.}) 2 Q~,]l/2 

{ fl[A~H({s.~})2A~.]'/2}) (4.17) + tr A~.ln cosh 
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Moreover the operators P~ H({sx } )2 p~ and P~, H( {s* } )2 Pr are unitarily 
equivalent under multiplication by e.~; OrB( {sx })2 Qr and QrH( {s_* } )2 Or 
are equal. Consequently 

( I )=  -~l ( t r{A~lncoshf l [A~H({s .~})2A~] ' /2}  

- tr {A~ ln cosh ~ [A~H( {s.* } )2 A~]l/2}) (4.18) 

We have the matrix inequality - 2 d - 2  ISI ~< T+2S<~2d+ 2 ISI, where d 
stands for d times the identity operator, and I SI is the diagonal matrix with 
entries Isxl. Thus 

( T + ) . S )  2 ~< (2d+).  181)2 (4.19) 

Using (4.19) and ArS2Ar = 0, we obtain the estimate 

tr {A~ ln cosh ~ [A~,H( {sx} )2 A~]l/2} <<, tr[A~ ln cosh(fld)] 

= [l(y) - k(7)] In cosh(fld) (4.20) 

Consider the configuration gx= s.* for x =  ~k(~,)+t ..... Ca~l and g,: = +1 for 
x :/: Ck(r)+ ~ ..... Ct(r~. We have Ay~Ar = A~,S*A~,. Therefore 

A~,(T+2S*)2A~,=A.~(T+2S)2A~,~Ar(2d-2)2Ar (4.21) 

The last inequality follows from the fact that I~xl = 1. From (4.21) we 
obtain the lower bound 

tr { A~ ln cosh ~ [ A~,H( { s.* } )2 A~ ] l/2 } ) [ l( 3' ) - k(~' ) ] ln cosh ~12 -- 2dl 

(4.22) 

Finally, (4.20) and (4.22) imply 

( f l l2-2dl-lncoshfld) ( I ) 1 > [ / ( y ) - k ( 7 ) ] f l - '  l ncosh~  

/> c~ 2 [ l (~ ) -  k(?)] (4.23) 

for some positive constant c~. This last inequality expresses the fact that 
the measure (1.5) gives a low probability to having zero spins on the sites 

822/76/1-2-8 
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Lower Bound for HI). We need to obtain a lower bound fk(S, t) 
and an upper bound on fk(S*, t). We start with the lower bound on 
fk(S, t). 

From (4.19), the commutivity of the projectors P~, Q~, and A~ with S 
and (4.6) 

Since 

X~, ~< (2d+ 2 ISI )2 (4.24) 

Z,(S) = (1 - t) X~,(S) + tH( {sx } ) 2 (4.25) 

(4.19) and (4.25) imply 

Gk(S, 0>t gk(2d+ 2 ISI) (4.26) 

with the diagonal matrix 

1 
gk(x)=(k+�89 , +�88 2, x>~O (4.27) 

Therefore 

fk(S, t)>~tr[Y~(S) gk(2d+ 2 ISI) Y~(S) gk(2d+ 2 ISI)] (4.28) 

Let us compute all the contributions to the right-hand side of (4.28) com- 
ing from the various terms in Y~,(S). Y~.(S) involves off-diagonal blocks of 
the matrix H({sx })2 = T 2 + 2zS2 + 2(TS + ST). The cyclicity of the trace 
and the commutivity of the projectors with S imply that the contribution 
of S 2 to (4.28) vanishes. The same is true about the cross terms involving 
T 2 and S 2. Also the terms with T 2 are positive, so the inequality is 
preserved if we drop them. The cross terms involving T 2 and TS+ ST 
or S 2 and T S + S T  vanish becausethey are odd under T ~  - T  (multi- 
plication by ex is unitary and transforms T--* - T  and S---, S). Thus it is 
sufficient to keep only the term coming from 2(TS + ST), i.e., 

f k( S, t) >t 222 tr[P~(TS + ST) Q ;. g~(2d+ 2 I SI) 

x Q.~( TS + ST) er gk(2d + 2 I SI )] (4.29a) 

+ 222 tr[P;.(TS+ ST) Arg~(2d+ 2 ISI) 

x A ~.(TS + ST) P~. gk(2d + 2 I SI) ] (4.29b) 

+ 222 tr[Q~.(TS+ ST) Argk(2d+ 2 IsI) 

• A~,(TS+ ST) Q~gk(2d+ 2 ISI)] (4.29c) 
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The term (4.29a) is est imated as 

222 ~ (s.+so) 2 gk (2d+  2 Is~l) gk (2d+  2 Isol) 
( u . v ) E O ) ' . u = ~ I , ' " ,  ~kl~l) 

>~ 222[g~(2d+ 2)]  2 y" (s,+s~) 2 
( u '  v ) E Oy 'u  ~ ~I  " " ' ,  ~k(?l 

= 822[gk(2d+  2)]  2 k(?) (4.30) 

For  the last equality we use the fact that  for the sites u, v we have 
s,+so= _+2. For  the term (4.29b) we can only use the fact that it is not 
negative, 

222 (s. + sv) 2 gk (2d+  J. Is.l) gk (2d+  2 Is,,I ) ~ 0 
( u , t , ) , u  = ~kl~'l+ 1,..-. ?,t(~.b v ~  i n t  ? (4.31 

since s .  = 0 and so might also be zero. The term (4.29c) is estimated as 

22 ~ ~ (s.+sv) ~ gk(2d+2 Isu[) gk(2d+2 IS=I) 
( u , v  ) E O;'.u='Y, klr)+ l,..., 41171 

/> 222[gk(2d+  2)32 [/(?) -- k(?) ]  (4.32) 

since in (4.32), s ,+sv= _+1. Summing these contributions,  we get 

f~(S)>~82Z[gk(2d+2)]Zl(~')-622[gk(2d+2)]2 [ / ( 7 ) -  k(?) ]  (4.33) 

Performing the sum over k an a trivial integration over t leads to 

O{2 

rl~ c2 c~ [l(?) _ k(?)]  (4.34) -~ k~o.= -u at(1 - t) f~(S, t) >~-~ l(7)--~ 

with 0 < c~ < cz. The first term on the right-hand side of (4.34) is just the 
s tandard Ising type of energy contr ibution one would have with + 1 spins. 
It is reduced by the second term coming from the fact that  the spin can 
take zero value inside ~,. 

We now obtain an upper  bound for fk(S*, t). We notice that  for the 
configuration S* we have 

P~(TS* + S 'T)  Q~, = Qr(TS* + S 'T)  P~, = 0 (4.35) 

Q~,(TS* + S 'T)  A~ = A~,(TS* + S 'T)  Q~ = 0 (4.36) 

Therefore 

S•  . , fk(S*, t)=fk.eQ( , t )+fk pA(S*, t )+fk oA(S*, t) (4.37) 
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with 

fk.eQ(S*, t) = 2 tr[P~T2Q~,Gk(S *, t) Q~T2P~Gk(S *, t ) ]  (4.38a) 

f~,Qa(S*, t) = 2 tr[Q~,T2A~.Gk(S *, t) A~,TEp~,Gk(S *, t)-] (4.38b) 

fk.eA(S*, t) = 2 t r [P~. (T+ 2S*) 2 A~.Gk(S*, t) A r ( T +  2S*) 2 P~Gk(S*, t ) ]  

(4.38c) 

To  get an upper  bound on each of these contr ibutions we use the pointwise 
estimate (C.10) (see Appendix C) on the kernel of Gk(S*, t). Since in the 
discrte case maxx~ A Is.*21 = 1, a computa t ion  leads to 

fk.pQ(S*, t) <~ c3[gk(c '32)]  Z k(?)  (4.39) 

fk. QA(S*, t) <<. c3[gk(c'3,~)] 2 [ l ( ) ' )  - -  k(?)]  (4.40) 

for positive constants  c 3 and c~ independent of 2. For  (4.38c) we have to 
develop ( T + 2 S * )  2 and consider each term separately. The one coming 
from 2 ( T S * +  S ' T )  is bounded by 

v' I  * , 2 - ul  22[gk(C'3).)] 2 ~, (s* + s*)E e -Iv-  (s,,, + sr e -V'  
<uv),(v'v") 

<~ C22[gk(c'32)] 2 [/(?) -- k(?)]  (4.41) 

In (4.41) the sum is over u, v " = ~ ,  ..... ~kl~.~ and v, v 'E in tT .  Similarly, the 
contr ibution coming from T" is bounded above by 

c3[gk(c'32)]'- [l(?) - k(?) ]  (4.42) 

Note  that  one gets the same constant  c 3 as in (4.39) and (4.40). For  the 
cross term involving T-" and 2(TS* + S ' T )  we get an upper  bound of the 
form 

C'2[gk(c'32)] 2 [1(?) -- k(7)]  (4.43) 

Thus fk.eA(S*, t) is bounded above by the sum of (4.41)--(4.43). 
Putt ing together this last estimate and (4.39), (4.40), performing the 

sum over k and the integration over t, we obtain the final bound (with 
c~' > 0, c;_" > 0, independent of 2) 

~ 3 ~C i* | I t  I l l  

~_~,~o î .0 c2 e2 [l(7)-k(?)] (4.44) dt(1 -- t) fk(S*,  t) <~ --~ 1(?) + T 
. ~  

The term c~/2 ~ comes from (4.39), (4.40), and (4.42), while the term c;"/2 
comes from (4.41) and (4.43). 
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Proof of (4.4) for the Discrete Case. F r o m  (4.34) and (4.44) 
we get the lower bound for (II)  in the form 

(i i )  ~ > / c 2 _  c~'~ 1 , ~,2 23) 1(?)-2 (c2+c;')[l(?)-k(?)] (4.45) 

The term propor t ional  to l(~,) on the r ight-hand side of this inequality is 
the Ising type of energy gain associated to the removal  of  y for _+ 1 spins. 
This is also the contr ibut ion one would obtain for the F K  model. The 
negative contr ibut ion comes from the contr ibution of the zero spins 
adjacent to ? from the inside. This is canceled by the "effective chemical 
potential" (I). Combining  (4.23) with (4.45) then yields, for 2 large enough, 
the bound 

C 
(I) + (II) /> ~ l(?) (4.46) 

with c a positive constant.  Thus we have obtained (4.4) with J ( 2 ) =  c/2. 

Peierls Argument for Continuous Spins. We first define the 
contours. For  ~i a fixed positive number  of O(1) we consider the parti t ion 
of R = A + u A _ u A o ,  with A + = [ + ~ r o ( 2 ) - - a , _ _ _ o ' o ( 2 ) + 6  ] and A o =  
R\(A + w A _ ). We fix + boundary  conditions by considering exs,. �9 A + for 
all x �9 {u �9 A I lu-vl  = 1, v �9 Za\A }. For  a given configuration {sx} we say 
that a site x is in a "0 state" if sx �9 ,4o, in a " +  1 state" if sx e ' 4 + ,  and in 
a " -  1 state" if s,. �9 A _. With these definitions we can draw the contours  in 
exactly the same way as in the discrete case. Let X(?, r ..... {k(r)) be the set 
of configurations {sx} which have a contour  (?, ~, ..... ~kc~.~). The proba-  
bility of a contour  (~,, ~, ..... ~k~.~) is simply the measure of s ~, ..... ~k~)) 
with respect to the distribution (1.5), i.e., 

P(]', ~l ..... ~k,~.,) = +  f dSe-/~FlS' (4.47) 
[~' , ,~ ..--. ~kl;.O 

where F(S)is given at the symmetry  point by (3.1) and dS=I~x~,~ ds.,.. To 
get an inequality like (4.2), so we can repeat the argument  of (4.3), we 
consider the configuration S* obtained from S in the following way: 

s_* = s.,., x �9 ext ~, (4.48) 

s , . - - s x ,  x e i n t  ?, X-C~k(~.j+t ..... ~m'~ (4.49) 

s.*=e.,.(ao(2)+fq(sx)), x =  ~kl~.~+l ..... ~m'l (4.50) 

where the function q(t) is a smooth,  monotone  increasing, odd map  from 
R t o  [ - 1, + 1 ] such that q( ___ ~ )  = _+ 1. The exact form of q does not mat-  
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ter but we need to have [q'(t)l < C for some constant and 1 -q2(t)~ [ t l - '  
for large Itl. We remark that the transformation from S to S* is one to one 
once ~ ..... ~ y )  are specified; thus by a change of variables 

1 ~ dS* ]J(S)] e-PF(S')e -pEr(s)-F(s*)] 

(4.51) 

where L'* is the transformed Z and the Jacobian (which is absent in the 
discrete case) of the transformation is 

]J(S)r = I-[ 6 - '[q'(sx)] - '  (4.52) 
x = r  [ ,---,  ~ a ~ )  

Thus (4.3) will hold if we prove the inequality 

1 
I F ( S ) -  F(S*)]  - ~ l n  IJ(S)l >~J(2)l(y) (4.53) 

for all {sx}~L'(?, i t  ..... ~k(~.))- From our hypothesis on q(t) we see that 
f l - '  In [J(S)[ <~ f l - ' ( In  6 + In C)[/(y) - k(7)]. With the choice 6 = O(1 ) this 
can be made arbitrarily small for low temperatures and turns out to be 
harmless at the end. 

R e m a r k .  The inequality (4.53) is the analog of (4.4), and is proved 
for some given 6. Going through the Peierls argument leads to Theorem 4.1 
with some 6'/> 3. 

We recall that now F(S) includes the energy y~.~ ~sx.~ 2 Here F(S) has the 
same integral representation as in the discrete case and is equal to ( I )+  (II) 
given by (4.15) and (4.16). 

Modif icat ion of the Estimates for Continuous Spins. First 
we find the lower bound for (I). Let {~k(~)+l ..... ~t(~)}=AtuA2, where 
A, is the set of sites for which Isxl <Cro0.)-6 and A2 the sites for which 
Isxl > ~ro(2) + 6. 

By the inequality (4.19) we get 

# [A~t4({sx})~ A,] '/~} tr (Ay In cosh 

>~ ~ In cosh ~ (2d+ 2 Isxl) (4.54) 
x ~ ~k~'~,l + I , - . . ,  ~l( ' / I  

Moreover with g~ = s*, x = ~k(r)+, ..... ~t(r), and g.~ = ao(2) for the other sites 
we have Ar(T+ 2S) 2 A r >t At(2 Is*l - 2d) 2 Ay. Thus 
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B 
~< ~ In cosh ~ (~ Is~*l - 2 d )  

,(., 
(4.55) 

Splitting the sums over the two sets A], A2, we get two corresponding 
contributions for ( I )=I~ + I v  Extracting the assymptotic behavior of 
(4.54) and (4.55) for fl --* 0% we get (ct = 1, 2) 

I ~  2-- ~, (Is.*l-lsxl)+lA,I O(e -#a) (4.56) 2 
X E A~ 

For continuous spins we have to take into account the energy dif- 
ference coming from the single-particle measure and add it to (I). We have 

�89 ~ (s2-s*2)=�89 ~ (s~-s*2)=-S,+S2 (4.57) 
x ~ A x E ~ k ( r } +  1 , . . . ,  ~l(;.} 

where S~, $2 correspond, respectively, to xEAI, A 2. For ct= 1, 2 we have 

> 1 -  [(iSxl 2 2 ,~+S~ ~ . ~ ,  - ~ ) - ( I s * l - @ ) 2 ] + l A , l O ( e  -oa) (4.58, 

For xeA~, (Isx1-2/2)2>~62 and (Is.*1-2/2)2=62[q(sx)]'-<-.32[q(2/2+6)]2. 
Thus with our choice of q(t), we have for ). large enough, 6 = O ( 1 )  (c~ a 
positive constant) 

II+SI>~IA,I~ I -  q +6 +lA~lO(e-aa)>~--IAd (4.59) 

For x~A 2 we split the sum further into two contributions A2 = As w A4, 
with x 6/13 if Isxl > a0(2) + 3 + 1, and x e A4 if tr0(2 ) + 3 < Is el < 
%(2) + 6 + 1. The sum with x e A 4 gives the same result as (4.59). For the 
sum with x 6 A  3 we simply note that (Isxr-2/2)2-(Is.*1-2/2)2>~1, so 
that it is bounded below by Cst IA4r. 

The result of this analysis is 

1 -s*2) >~-~ -k(~,)] (I) + -  y~ (s~ Et(~) 
2 . x ' ~ A  " " 

(4.60) 

We now indicate the modifications needed to estimate (II). The lower 
bounds (4.28)-(4.29) on fk(S, t) are unchanged. In (4.30) we have Is d-< 
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a0(2)+6, x = u , v .  Moreover [ s , + s o l ~ 2 [ a o ( 2 ) - 6 ] .  Thus the lower 
bound in (4.30) becomes 

8,1.2 [tro(2) - 6] 2 { gk(2d + ,l.[tro(2) + 6] )}2 k(y) (4.61) 

For the terms (4.31) and (4.32) we simply use the fact that they are 
positive.. Therefore the bound (4.34) becomes (cs, c; positive constants) 

p3 x--f~ , >c~ I-ao(,~)-63 ~ k" �9 
]-gk/_S,oJO= d t ( 1 - t ) i k ( S , t )  2 [ t r o ( ; t ) + ~  tY, 

C 5 C 5 > ~ / ( y ) -  ~ El(y)- k(y)] (4.62) 

where we have used that 6 =  O(1) and Oo(J.)= 0(2) for large ;t. 
In the continuous case the operators involved in (4.35) and (4.36) do 

not vanish. Therefore T 2 must be replaced by (T+  2S*) 2 in (4.38a)-(4.38b) 
and we must consider the contributions from T 2, 2(TS* + S 'T) ,  and the 
cross terms not included in (4.27). In doing this we will use the bounds 

IIPy(TS* + S ' T )  Qyl] ~<4d6 

IIQr(TS* + S* T) ArlI <-% 4d6 

(4.63) 

(4.64) 

For the terms coming from T 2 w e  proceed as in the discrete case, 
S . 2  except that now maxx~A .~ > / [ a o ( 2 ) - 6 ]  2. This yields upper bounds 

like (4.39}-(4.40) with [gk(C'32)] 2 replaced by {gk(C'32[ao(2)--6])} 2. 
For the ones coming from 2(TS* + S ' T )  we also use (4.64) and (4.65). 

So we find upper bounds proportional to 62{ gk(c'32[cro(2)- 6])} 2 k(y) and 
62{ gk(c'32[ao(2) - 63)} 2 [/00 - k(y)]. 

For the cross terms we have the same upper bounds with 6 replacing 
62. Since we choose 6 = O(1) we see that the estimated of f , .pe(S* ,  t) and 

S* fK.O.A( , t) are as in (4.39)-(4.40) with gk(C'32) replaced by gk[C'32aO(2)] 
and c 3 changed to some other constant of O(1). For (4.38c) the analysis is 
similar. Finally we find 

1-6 dt (1 -- t) fk(S, t) 
k = O  

C6 

~<,~L ~)~3r~o';t'-6] 3/(?) + 
t i t  

C6 
2[ao(2)_ 6] 3 [ / (7 ) -  k(?)] 

c6 c~' 
~<~g l (y )+~- / [ / (y ) -  k(y)] (4.65) 
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From (4.62) and (4.66) we get the lower bound for (II) 

( c 5 c 6 )  c7 
(11)/> ~5-~'g l (y ) - -~[ l (y ) -k (~)]  (4.66) 

Finally, from (4.60), (4.66), and the remarks about the Jacobian factor 
IJ(S)l we obtain (4.53) for fl, 2, and fl/)t large enough with J (2 )=  c/2 and 
6 = O(1 ). This completes the proof of Theorem 4.1. 

5. CONCLUDING REMARKS 

We have indicated in Eq. (1.16) and below (1.12) the relation between 
the one-point functions (sx)A and (nx),~ for the FK and Holstein models. 
One can also relate the spin-spin correlation to the imaginary time-dis- 
placed density~lensity correlation of the fermions; see Appendix A. For the 
Holstein and FK models at the symmetry point with periodic boundary 
conditions it takes the form 

l f o  1 2 -~ dt (nxny(t)) a =-~--~ g(fl, ).)((n,.s.,.)A + (nySx)a) 

4 
+ f f  [g(/~, 2)] 2 (sxs,.)A, x e y  (5.1) 

where ny(t) = exp[ - tH,~(O, 2/2)] ny expE + tHA(O, 2/2)]. For the Holstein 
model we have g(fl, 2 ) =  1 and for the FK model g(fl, 2) is given by (A.7). 

In the present work we have only considered the case of density 1/2 
for the fermions. In this case the ground-state spin configuration becomes 
periodic with period 2 and therefore opens a gap in the one-fermion energy 
spectrum. (In other words, the system is an insulator because we have a 
filled band.) Numerical simulations in one dimension show that for irra- 
tional densities p of electrons (in the infinite-volume limit one can make the 
density irrational) and small coupling 2 the minimizing spin configuration 
is a function u~(px+ot) with u;.(y) analytic in 2 and periodic in y of 
period 1 (thus it is incommensurate with the lattice), and ct is a phase the 
value of which is arbitrary. This is in contrast to the case p = I/2, where the 
function describing the spin configuration has an essential singularity at 
).= 0 and is commensurate with the lattice, and the phase is fixed. This 
situation is analogous to the one encountered in the Frenkel-Kontorova 
model and is reminiscent of KAM theory (see refs. l and 2 for a discussion 
of these points). A rigorous proof of these numerical results is still an open 
problem but may not be out of reach. A related question is whether a gap 
opens or not in the one-fermion energy spectrum for irrational densities 
and small 2. 
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Although the integration over the quantum degrees of freedom is valid 
for any 2, thereby reducing the problem to a classical one, it seems to us 
that it is appropriate only for large 2. In the case of the Holstein model one 
can easily perform the Gaussian integration over the classical degrees of 
freedom by going to a functional integral representation using Grassman 
variables for the fermions. The problem is then reduced to an itinerant 
fermion problem with a long-range interaction in the time direction (in the 
functional integral formalism). This point of view might be useful to treat 
the small-), limit, and more specifically the problems mentioned above. It 
can also be used to obtain some rigorous results about the fully quantum 
Holstein model (where the phonons are treated quantum mechanically) in 
one dimension. I~~ We hope to come back to these questions in a future 
work. 

Finally, we mention that in ref. 24 the authors treat a kind of mean- 
field version of the quantum Holstein model in which there is only a single- 
frequency phonon model coupled to the fermions. An exact solution then 
displays the transition to periodic structure at low temperatures. Also, 
Freericks and Lieb (9) have recently proved in a very general setting that if 
there is an even number of electrons (with spin 1/2), the ground state is a 
singlet for all electron-phonon couplings. 

A P P E N D I X  A 

We prove several relations between electronic and spin correlation 
functions discussed in the introduction and the conclusion. To simplify the 
notation we do not write the fl,/~, h dependence of various quantities. 

Proof of Formula (1.8). Differentiating the total energy (1.6) 

1 
F~({sx}) = - ~ log Tr  e -~'v~'h) (A.1) 

with respect to s, gives 

aF~ = 2 Tr hue -~H'~t#'h) 
~s, Tr e-~"~("'h) h (A.2) 

where H'  is defined as in (1.1) without the term f(s~) and p(sx)=e -af(s~). 
Performing the average over the spin degrees of freedom, we obtain 

"s 
flZA I-I p(sx) dsx e -aFA =2(n ,> . j -h  (A.3) 

X E A  

An integration by parts shows that the left-hand side of (A.3) is equal to 
(d/ds,f(s2,)>+ [p ,~(s ,=oo) -pA(s ,=-~)] ,  where pA(s,) is the prob- 
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ability distribution of su. Obviously for finite volume pA(s.= +oo)=0. 
Therefore (1.8) follows from (A.3). 

Proof of Formula (1.76). We denote by (-)A,r  and (--)A,VK the 
averages for the models defined by (1.15) and (1.14), respectively. Applying 
(1.8), we have 

2(nu )A,v = h - 4),( (s~ - 1 ) su )A,~, (A.4) 

We now restrict ourselves to the symmetry point. As ~, --. oo, the single spin 
measure (1.15) goes over to that of the FK model and from Theorem 3.1 
the {sx} will be approximately given by 

2 , ( s : - -  1, .~--~ ~ [E(k,]-'tanh[flE(k,] (A.5, 
k a , a =  1 - . - d  

with E(k) given by (3.4). Thus we have 

22 
lim 4 r ( ( s ] -  1 ) s . ) . . ~ =  T g(/L )-)(s.)a,vK (A.6) 

with 

k~,ct  = I - . - d  L z "  ._l 

Combining (A.4) and (A.6), we obtain (1.16). 

Proof of Formula (5.1). From (A.2) we get for u, v fixed 

02F'~ = 2 O Tr n.e-;n'At"'n) 
Os. Osv Oso Tr e -tm~"'n) (A.8) 

The partial derivative on the right-hand side of (A.8) can be computed by 
using first-order perturbation theory 

0 I; Os---~ Tr n.e-~H'A~"'h~= --X dt Tr n~e-'n'~c"'h~(n,-h) e -~-'IH'~"'"~ (A.9) 

Replacing (A.9) in (A.8) and performing the average over the spin variables 
gives 

�9 (O2F'A)e-~F;, 
"~---~ f x~. P(sx) ds~ kosu Osv/ 

= -2z I~ dt ((n.nv(t)) - (nu)(nv)) (A.IO) 
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where for any matrix V 

V( t ) = e m'~c''h) Ye-'n'Zu'hl (A. I 1 ) 

The left-hand side of (A.10)can be written as (AI +A2), with 

e A l = fl p(sx) dsx \ -BF~ (A.12) 

1 1 3 2 
A 2 = - ? Z - - ~ f  I-I P(sx)dsxds-~(e-#~'~)  (A.13) 

x ~ A  

Replacing (A.2) in (A.12) and making a double integration by parts in 
(A.13), we obtain from (A.10) the final formula 

22; ;a t  (n .no ( t ) )+ f l ) . { (n~[2s . f ' ( s~ ) -h] )+  , 2 _ (n, ,[Zs. f  (s.) h ] ) }  

, 2 t 2 + 4f l (s ,s~f  (s,) f (so)) 
2 2 . 2 = ( 2 f  (s , )+4s,  f (s~)) ~5,,0 (A.14) 

In particular, for the static Holstein model at the symmetry point we get 
(5.1) by setting f(s~.)= i z . 5sx. In the case of the FK model we get (5.1) by 
using the spin measure (1.15) and (A.5). 

A P P E N D I X  B 

We discuss the existence and behavior of solutions of Eqs. (2.3) of 
Theorem 2.1 and (3.3) of Theorem 3.1. We set 

___22 1 ~ 4 cosk~ +2-'t (B.I) 
KA(t) = 4 IAI k . . . .  ~ ...a = 

Equation (2.3) reduces to f ' ( t )=  K,(t), t>~O. The function f '(t) ,  t/>0, is 
continuous and increasing [since f"(t)/>0]. On the other hand, K.~(t) is 
continuous and decreasing, and KA(oo)= 0, K.~(0)--* ~ as A --* Z a because 
lY'.= a= , cos k,I - ~ has a logarithmic singularity for k,  = n/2, ~ = 1 --. d. 
Therefore for IAI large enough Eq. (2.3) always has a unique solution. This 
is also the case for the corresponding equation in the thermodynamic limit. 

Behavior  of the  Solut ions of  (2 .3)  for  the  Holstein 
M ode l .  For 2 large the right-hand side of (2.3) (with t = a  2) behaves as 
2/4a. Thus as 2 --. c~, Go(2) ~ 2/2. For small 2 

d 2 - -  1 / 2  

(2n)_af[  ,,]adk[4(=~= cosk~ ) +22az]  1 - ,  ~ ~  ln(2a) -1 (B.21 

Therefore we get ao(2)~  2-~e-4 : - :as  2 ~ O. 
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Existence and Nonexistence of Solutions of (3.3).  We set 

'~21 __~1 [E(k)j-ttanhI~E(k) ] (B.3) Ka'p(t) = 4 IAI k . . . . . . .  d 

Equation (3.3) reduces to f ' ( t ) =  KA.a(t), which is a monotone decreasing 
function of t for any /3 with KA.p(oo)=0. For /3<oo, KA.p(0 ) remains 
bouhded as A ---, Z d because 

d 1 d 
=__~lcosk= - tanh~ =__~lcosk= 

is integrable. Two cases have to be considered. When f is a polynomial of 
degree greater than or equal to two [case(i) of Theorem3.1] then 
f ' ( 0 ) = 0 .  Thus in this case (3.3) has a unique solution for all/3. On the 
other hand, in case (ii) of Theorem 3.1, f ' ( 0 ) =  1. Therefore there is a 
unique solution if 13 is such that 

KA,a(O) 1> 1 (B.4) 

and no solution if 

KA.p(0) ~< 1 (B.5) 

The inequality (B.4) is obviously satisfied for/3 small enough, while (B.5) 
holds for/3 large enough. The critical value of/3 is unique since KA.p is a 
monotone increasing function of/3. 

APPENDIX  C 

We derive an upper bound on the kernel of Gk(S*, t), by using the 
Combes-Thomas method. 16) The argument was used already in refs. 18 and 
19, but here it is slightly different, so we provide the details. What follows 
is valid for discrete as well as continuous spins. 

Let Q be the matrix with elements (Q),v = e . . . .  5,~ for a vector m to be 
conveniently chosen later. A computation yields 

with 

/3 2 
Q[Qk(S*, t ) ] - '  Q - ' =  [G~(S*, t ) ] - '  +--~R(S*) 

R(S*) = (ET+ TE + E2)o + t (ET+ TE+ Ez)Nz) 

+ 2(ES+ SE)o + t2(ES+ SE)No 

(c .1 )  

( c 2 )  
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where (E),v = t,v(e m" ("- ~)-  1) and for any matrix V, Vo and VND are the 
diagonal and nondiagonal blocks i.e., 

vo = P~ vP~ + Q,. VQ~ + A~ vA, (c.3) 

V No = Py VQ~ + Q~ vP~ + Py VAr 

+ A~ VPy + Q~ VAy + A~ VQ~ (C.4) 

S* Since the operator norm IlS*ll-maxx~A I .~ I, 

[IR(S*)ll <~ 8d2(elml--1)+8dZ(elml-- l)2 +8d).(et'~l--1)max ls.,l (C.5) 
x~iiA 

Moreover the operator norm of 

ra~(s*,  t)] - '  = k + ~ ,~2 + . 4  [).2S*~ + ( T2)~ + t(r2),,~ 

+ ) .(TS*+S*T)o+). t (TS*+S*T)No] (C.6) 

is given by its maximal eigenvalue. Consequently it is certainly greater than 

( II[Gk(S*,tj]-tll>>. k+  n 2 

p~ 
+ -4 - ()'2 max.~A Is*2l - 8 d 2 - 8 d ) .  max.~.t Is.~*l) (C.7) 

The configuration {s*} has max,.~A Is.*l 1> I (for discrete as well as con- 
tinuous spins); therefore for 2. large enough we have 

ll[a,,(s*,t)]-~ii>~ k+~ ~+Zc;').~maxls.*~21 (c.8) 

with c~' a positive constant independent of 2.. From (C.5) and (C.8) we see 
that by choosing Ira[ = 1 we have for some positive constant c~ independent 
of). 

II[G~(S*, t ) ] - ' l l - ~  IIR(S*)II >/ k + ~  n '+-~-c ; ) .2max Is*2l (C.9) 

Therefore, taking m = - ( u - o ) l u - v l - %  we conclude from (C.1) and 
(C.9) 

1 
(ulGk(S*,t)  lv}<-~(k+�89188 -I"-~1 (C.IO) 
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